A Dynamical System for PageRank with Time-Dependent Teleportation

نویسندگان

  • David F. Gleich
  • Ryan A. Rossi
چکیده

We propose a dynamical system that captures changes to the network centrality of nodes as external interest in those nodes vary. We derive this system by adding timedependent teleportation to the PageRank score. The result is not a single set of importance scores, but rather a time-dependent set. These can be converted into ranked lists in a variety of ways, for instance, by taking the largest change in the importance score. For an interesting class of the dynamic teleportation functions, we derive closed form solutions for the dynamic PageRank vector. The magnitude of the deviation from a static PageRank vector is given by a PageRank problem with complex-valued teleportation parameters. Moreover, these dynamical systems are easy to evaluate. We demonstrate the utility of dynamic teleportation on both the article graph of Wikipedia, where the external interest information is given by the number of hourly visitors to each page, and the Twitter social network, where external interest is the number of tweets per month. For these problems, we show that using information from the dynamical system helps improve a prediction task and identify trends in the data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic PageRank Using Evolving Teleportation

The importance of nodes in a network constantly fluctuates based on changes in the network structure as well as changes in external interest. We propose an evolving teleportation adaptation of the PageRank method to capture how changes in external interest influence the importance of a node. This framework seamlessly generalizes PageRank because the importance of a node will converge to the Pag...

متن کامل

Fast Parallel PageRank: A Linear System Approach

In this paper we investigate the convergence of iterative stationary and Krylov subspace methods for the PageRank linear system, including the convergence dependency on teleportation. We demonstrate that linear system iterations converge faster than the simple power method and are less sensitive to the changes in teleportation. In order to perform this study we developed a framework for paralle...

متن کامل

CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM

We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...

متن کامل

Using Polynomial Chaos to Compute the Influence of Multiple Random Surfers in the PageRank Model

The PageRank equation computes the importance of pages in a web graph relative to a single random surfer with a constant teleportation coefficient. To be globally relevant, the teleportation coefficient should account for the influence of all users. Therefore, we correct the PageRank formulation by modeling the teleportation coefficient as a random variable distributed according to user behavio...

متن کامل

Three results on the PageRank vector: eigenstructure, sensitivity, and the derivative

The three results on the PageRank vector are preliminary but shed light on the eigenstructure of a PageRank modified Markov chain and what happens when changing the teleportation parameter in the PageRank model. Computations with the derivative of the PageRank vector with respect to the teleportation parameter show predictive ability and identify an interesting set of pages from Wikipedia.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Internet Mathematics

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014